

New Evidence on the Importance of Maternal Nutrition in Lactation for Milk Quality (Micronutrients)

Lindsay H. Allen
USDA, ARS Western Human Nutrition Center,
University of California, Davis

Importance of measuring milk MN

- Lack of information on maternal nutritional status in lactation, and on nutrients in milk.
- Milk is sole source of MN for 6 mo, important for 24 mo.
- Milk concentrations are used to set recommended MN intakes for infants, young children and lactating women.
- Used to estimate MN gaps in complementary feeding;
 Requirement amount from milk = gap
- Prevalence of low/inadequate milk MN concentrations in populations? How do we define low?
- Effects of low milk levels on infant status, growth, development?
- Need multiple MN supplements? In pregnancy and lactation?
- Are milk MN concentrations a population MN status biomarker?

MN groups in lactation (Allen 1994, revised 2019)

Group I

Milk MN ∞ to maternal status, infant depleted. Supplements can ↑ MN in milk.

Group II

Milk MN independent of maternal status, mother depleted. Supplements no effect on milk.

B-1, B-2, B-6, B-12, C

A, D, E, K

Choline

lodine

Selenium

Folate

Calcium

Iron, copper, zinc

Development of analytical methods

Free thiamin, riboflavin, FAD, nicotinamide, pyridoxal, pyridoxine, biotin, pantothenic acid via UPLC-MS/MS

B12 via CPBA

5 platforms 6 methodological approaches ≈1 mL of milk

Iron, copper, zinc, calcium, potassium, magnesium, phosphorus, sodium via ICP-AES

Carbohydrates, fat, protein via NIRS

PLOS ON

WILEY Maternal & Child Nutrition The effects of a lipid-based nutrient supplement and antiretroviral therapy in a randomized controlled trial on iron, copper, and zinc in milk from HIV-infected Malawian mothers

Daniela Hampel^{2,1} | Setareh Shahab-Ferdows¹ | Erik Gertz¹ | Valerie L. Flax³ | Linda S. Adair³ | Margaret E. Bentley³ | Denise J. Jamieson⁴ | Gerald Tegha⁵ | Charles S. Chasela^{5,6} | Debbie Kamwendo⁵ | Charles M. van der Horst⁷ | Lindsay H. Allen^{1,2}

and associations with maternal and infant biomarkers

Thiamin and Riboflavin in Human Milk:

Effects of Lipid-Based Nutrient Supplementation and Stage of Lactation on Vitamer Secretion and Contributions to Total Vitamin Content

Total thiamin via HPLC-FLD

Chromatographia (2012) 75:241–252 DOI 10.1007/s10337-012-2193-9

Rapid Isocratic HPLC Method and Sample Extraction Procedures for Measuring Carotenoid, Retinoid, and Tocopherol Concentrations in Human Blood and Breast Milk for Intervention Studies

Tami Turner : Betty I. Burri

Vitamin A and E via **HPLC-DAD**

Advances in Nutrition

AN INTERNATIONAL REVIEW JOURNAL

Current Knowledge on Micronutrients in Human Milk: Adequacy, Analysis and Need for Research

Supplement Coordinators:

Lindsay H Allen and Daphna K Dror US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center

- Introduction to Current Knowledge on Micronutrients in Human Milk: Adequacy, Analysis, and Need for Research.
- Overview of Nutrients in Human Milk.
- Limitations of the Evidence Base Used to Set Recommended Nutrient Intakes for Infants and Lactating Women.
- Micronutrients in Human Milk: Analytical Methods.
- Retinol-to-Fat Ratio and Retinol Concentration in Human Milk Show Similar Time Trends and Associations with Maternal Factors at the Population Level: A Systematic Review and Meta-Analysis.
- Iodine in Human Milk: A Systematic Review.
- Vitamin B-12 in Human Milk: A Systematic Review.

World map of Allen lab's milk composition studies

B-vitamin concentrations in milk vs. Adequate Intake (AI) value

 Our recent measurements of milk vitamin concentrations globally show median levels below current recommendations

Global values for milk B12: analyses from the Allen lab Median values as % of Adequate Intake value

Relative median concentrations of vitamin A and E in milk as % of Adequate Intake value

Randomized controlled trials

Vitamin B-12 Supplementation during Pregnancy and Early Lactation Increases Maternal, Breast Milk, and Infant Measures of Vitamin B-12 Status^{1,2}

Christopher Duggan, 3,6,11* Krishnamachari Srinivasan, 4 Tinku Thomas, 5 Tinu Samuel, 3 Ramya Rajendran, 4 Sumithra Muthayya, 3 Julia L. Finkelstein, 9 Ammu Lukose, 4 Wafaie Fawzi, 6,7 Lindsay H. Allen, 10 Ronald J. Bosch, 8 and Anura V. Kurpad 3

Antiretroviral therapy provided to HIV-infected Malawian women in a randomized trial diminishes the positive effects of lipid-based nutrient supplements on breast-milk B vitamins^{1–3}

Lindsay H Allen,^{4,5}* Daniela Hampel,^{4,5} Setareh Shahab-Ferdows,⁴ Emily R York,^{4,5} Linda S Adair,⁶ Valerie L Flax,⁶ Gerald Tegha,⁸ Charles S Chasela,^{8,9} Debbie Kamwendo,⁸ Denise J Jamieson,⁷ and Margaret E Bentley⁶

RESEARCH ARTICLE

Thiamin and Riboflavin in Human Milk:

Effects of Lipid-Based Nutrient

Supplementation and Stage of Lactation on

Vitamer Secretion and Contributions to Total

Vitamin Content

Daniela Hampel^{1,2*}, Setareh Shahab-Ferdows¹, Linda S. Adair³, Margaret E. Bentley³, Valerie L. Flax³, Denise J. Jamieson⁴, Sascha R. Ellington⁴, Gerald Tegha⁵, Charles S. Chasela^{5,6}, Debbie Kamwendo⁵, Lindsav H. Allen^{1,2}

Perinatal Consumption of Thiamine-Fortified Fish Sauce in Rural Cambodia A Randomized Clinical Trial.

Kyly C. Whitfield, Crystal D. Karakochuk, Hou Kroeun, Daniela Hampel et al.

JAMA Pediatr. 2016

Locations and Co-Investigators: Mothers, Infants, Lactation Quality (MILQ) Study

Measurement schedule (n=250 dyads x 4 sites)

	Pregnancy	Birth	1 – 3.49 m	3.5 – 5.99 m	6 – 8.49 m
Screen/enroll	X			Х	
Colostrum/milk		Х	Х	Х	X
Milk volume, D20			Х	Х	Х
Blood mother			Х	Х	Х
Blood infant			Х	X (50%)	X (50%)
Dried blood infant			Х	X (50%)	X (50%)
Urine mother/infant			Х	Х	Х
Anthrop. mother	Х	Х	Х	Х	X
Anthrop. infant		Х	Х	Х	Х
Development				Х	Х
Diet mother (2 d)		X	Х	X	Х
Diet infant (2 d)		Х	Х	X	X
Feces mother/infant			Х	X	Х

Some planned analyses

63		6	
M	ô		3
and Lo	hers, I	nfants Quality	

Analytes	# Assays	# Samples	Methods
Milk vitamins (18)	5	3000	HPLC, LC-MS/MS
Milk minerals (10)	2	3000	ICP-AES, MS
Milk metabolomics, proteomics	2	3000	LC-TOF-MS, LC-CHIP Q-TOF, LC-MS/MS
Macronutrients (3)	1	3000	IR-Spectroscopy
Milk volume	1	15,750	FTIR
Infant vitamins (13)	2	2000	HPLC, LC-FLD, e411, LC-MS/MS
Infant minerals (3)	1	2000	ICP-AES
Infant thyroid /iodine	2	5000	ELISA, GSP, Colorimetric
Infant metabolomics	1	800	Biocrates
Infant inflammation	6	2000	Integra
Fecal, milk microbiomes		2000	
Mothers		3000	Diet, MN status, genetics

MILQ metabolomics

New MxP® Quant 500 kit for analyzing ~630 metabolites

Small Molecules

- Alkaloids (1)
- Amine oxides (1)
- Amino acids (20)
 - Amino acid related (30)
 - · Bile acids (14)
- ★ Biogenic amines (9)
 - · Carbohydrates and related (1)
 - Carboxylic acids (7)
 - Cresols (1)
 - · Fatty acids (12)
 - Hormones (4)
 - Indoles and derivatives (4)
 - Nucleobases and related (2)
 - Vitamins and cofactors (1)

Lipids

- Acylcarnitines (40)
- ★ Phosphatidylcholines (76)
- ★ Lysophosphatidylcholines (14)
- ★ Sphingomyelins (15)
 - · Ceramides (28)
 - Dihydroceramides (8)
 - Hexosylceramides (19)
 - Dihexosylceramides (9)
 - Trihexosylceramides (6)
 - · Cholesteryl esters (22)
 - Diglycerides (44)
 - Triglycerides (242)

Sciex ExionLC couples to Sciex 6500+ QTRAP MS

Novel aspects of the study

- Reference values: nutrients in milk, maternal and infant biomarkers.
- Revise nutrient requirements, mothers/infants.
- Enables global comparisons.
- Population nutritional status biomarker?
- Milk biology; new vitamers, metabolites, HMOs, antibodies.....
- Nutrient intake data
- Maternal genomics
- Milk cell....
- Early MILQ

Policy implications

- Need to raise awareness of prevalence of low milk MN without causing alarm. Should focus on mother's nutrition during lactation.
- Multiple MN supplementation is not (yet) recommended by WHO for pregnant women to improve maternal and perinatal outcomes. But might be needed to improve milk MN.
- If maternal supplements not effective enough, need infant supplements in some situations?
- More accurate intake recommendations may change estimates of nutrient gaps, and formulation of complementary foods, for infants, young children.

Collaborators in milk research

WHNRC:

Setti Shahab-Ferdows

Daniela Hampel

Julianne Saracha

Juliana Haber

Janet Peerson

Bangladesh: M. Islam, R. Raqib,

T. Siddiqua

Brazil: G. Kac, E. Barros, D.

Farias

Cambodia: K. Whitfield

Cameroon: R. Engle-Stone, K.

Brown

Canada: T. Green, P. Chebaya

BILL & MELINDA GATES foundation

Agricultural Research Service

Denmark: E. Nexo, D. Lildballe, K. Michaelsen, K. Eriksen, S. Hilario Christensen

Gambia: S. Moore, A. Doel

Ghana: K. Dewey, iLiNS team

Guatemala: M. Ramirez, N.

Solomons

India: C. Duggan, A. Kurpad

Indonesia: L. Houghton, R.

Gibson

Kenya: A. Williams, C. Stewart.

C. Chantry

Malawi: P. Bentley, L. Adair, V. Flax, K. Dewey, P. Ashorn

New Zealand: T. Green

Norway: T. Strand, S. Henjum

Peru: T. Gyorkos, L. Mofid

Philippines: M. Haskell

Tanzania: W. Fawzi

USA: M. Perrin, R. Pawlak, J. Smilowitz

